Armstrong Atlantic State University
Faculty Senate Bill FSB-2013-10-21-01:
University Curriculum Committee

Presidential Action

The attached University Curriculum Committee minutes and actions are provided to the University President for approval.

Delivered:

Signature: [Signature] Date: 11/23/13

Approve: ✓

Disapprove: __

Remand: __

Comments: (please attach an additional sheet if necessary)

Signature: [Signature] Date: 11/8/13

Dr. Linda M. Bléicken, President
Armstrong Atlantic State University
PRESENT: Suzanne Carpenter, Becky da Cruz, Mirari Elcoro, Catherine Gilbert, Sara Gremillion, Robert Harris, Jackie Kim, Denene Lofland, Lauren Mason, Rick McGrath (Chair), Anthony Parish, Phyllis Fulton (Catalog Editor)

ABSENT: David Lake, Kam Fui Lau

GUESTS: Brent Feske, Delana Gajdosik-Nivens, John Hobe, Will Lynch, Doug Masini, Sandy Streater, Anne Thompson

CALL TO ORDER. The meeting was called to order at 3:03 p.m. by Dr. Rick McGrath.

APPROVAL OF MINUTES. The minutes of September 4, 2013 were approved as presented.

ITEMS

I. College of Education
 A. Adolescent and Adult Education (no items)

 B. Childhood and Exceptional Student Education

 Items 1-2 from the Department of Childhood and Exceptional Student Education were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

 1. Modify the following course
 ECUG 3040 Childhood Development from Prenatal Period to Adolescence
 Prerequisite: Admission to Candidacy in the Department of Childhood and Exceptional Student Education

 Rationale: The prerequisite is no longer required.

 Effective Term: Fall 2014
2. **Modify the following course**
 ECUG 3072 Teaching of Reading
 Prerequisite: Admission to the Department of Childhood and Exceptional Student Education, and ECUG 3071.

 Rationale: The prerequisite is no longer required.
 Effective Term: Fall 2014

II. College of Science and Technology

A. Biology

Items 1-2 from the Department of Biology were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

1. **Modify the following course:**
 BIOL 4910 RESEARCH
 Prerequisite: permission of instructor or department head
 Assigned research activity directed by a faculty member in the department, or at an appropriate outside facility. Project to be approved by the faculty member or external supervisor. May be taken for 1, 2 or 3 credit hours. Upon approval, 3 credit hours of research can substitute for a Biology elective in any track within the major. If repeated for additional credit, up to 3 6 hours may be used as free electives.

 Rationale: There is demand by both faculty and students to increase the number of opportunities for undergraduate research. Allowing additional credits in their programs will facilitate extended undergraduate research experience.

 Effective Term: Fall 2014

 CURCAT:
 - Major Department: Biology
 - Can course be repeated for additional credit? Yes
 - **Maximum number of credits:** 6 9
 - Grading Mode: Satisfactory/Unsatisfactory
 - Course Equivalent: None

2. **Modify the following course:**
 BIOL 4950 INTERNSHIP
 Prerequisite: permission of department head
 Experiential learning opportunity sponsored by the Biology Department or an outside agency. Project selected, supervised, evaluated by faculty advisor and department head in consultation with outside agency. May be used to count only toward free electives. May be repeated once for up to 9 total hours of additional credit.

 Rationale: Creating variable number of credit hours for the internship experience will give flexible options for students who seek internship opportunities.

 Effective Term: Fall 2014
B. Chemistry and Physics

Items 1-10 from the Department of Chemistry and Physics were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

1. Create the following course:
 BCHM 3301 BIOANALYTICAL CHEMISTRY 3-0-3
 Prerequisite: CHEM 2102 (minimum grade of C) and CHEM 2102L (minimum grade of C) and CHEM 2300 (minimum grade of C)
 Prerequisite or Corequisite: PHYS 1112K or PHYS 2212K
 Description: Modern methods of instrumental analysis with emphasis on solving biological problems.
 Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.
 Effective Term: Fall 2014, pending BOR approval of degree program

2. Create the following course:
 BCHM 3403 BIOPHYSICAL CHEMISTRY 3-0-3
 Prerequisite: CHEM 2300 (minimum grade of C) and MATH 1161
 Prerequisite or Corequisite: PHYS 1112K or PHYS 2212K
 Description: The fundamentals of physical chemistry from a biochemical perspective. Topics including gas laws, heat and work, and the laws of thermodynamics, material and reaction equilibrium, standard thermodynamic functions, and reaction kinetics.
 Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.
 Effective Term: Fall 2014, pending BOR approval of degree program
CURCAT:
Major Department: Chemistry and Physics
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 3
Grading Mode: Normal
Instruction Type: Lecture
Course Equivalent: None

3. Create the following course:
BCHM 3811 INTRODUCTION TO BIOCHEMICAL TECHNIQUES 0-4-1
Prerequisite: CHEM 2102 (minimum grade of C) & CHEM 2102L (minimum grade of C), CHEM 2300 (minimum grade of C)
Prerequisite or corequisite: CHEM 3801
Description: Experiments designed to introduce and teach standard biochemical techniques. Topics include protein purification (size exclusion, ion-exchange, and affinity chromatography), SDS-PAGE analysis, Michaelis-Menton kinetics, investigating protein-protein interactions. This course will be cross-listed with CHEM 3803 for Biochemistry majors.
Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.
Effective Term: Fall 2014, pending BOR approval of degree program

CURCAT:
Major Department: Chemistry and Physics
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 1
Grading Mode: Normal
Instruction Type: Laboratory
Cross-listing: CHEM 3803
Course Equivalent: CHEM 3803

4. Create the following course:
BCHM 3812 ADVANCED BIOCHEMISTRY LABORATORY 0-4-1
Prerequisite: BCHM 3811 (minimum grade of C)
Prerequisite or corequisite: CHEM 3802
Description: Experiments that utilize and teach advanced biochemical techniques to support the instruction of CHEM 3801 and 3802. Experiments further emphasize the techniques used in BCHM 3811 and introduce recombinant DNA technologies.
Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.
Effective Term: Fall 2014, pending BOR approval of degree program

CURCAT:
Major Department: Chemistry and Physics
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 1
Grading Mode: Normal
5. Create the following course:
BCHM 4501 BIOCHEMISTRY SEMINAR 2-0-2
Prerequisite or corequisite: CHEM 3802 (minimum grade of C)
Description: Use of biochemical journals, references, and electronic information sources. Includes a variety of oral and written assignments. Department faculty involved in assessments.

Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.

Effective Term: Fall 2014, pending BOR approval of degree program

CURCAT:
Major Department: Chemistry and Physics
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 2
Grading Mode: Normal
Instruction Type: Lecture
Course Equivalent: None

6. Create the following course:
BCHM 4811 BIOINSTRUMENTAL LABORATORY 0-4-1
Prerequisite or corequisite: BCHM 3301 and BCHM 3403
Description: An advanced laboratory course for biochemistry majors. The course applies spectrochemical techniques to biological problems to determine structure, function, thermodynamic and kinetic properties of biomolecules.

Rationale: This course emphasizes biochemistry and is needed to support a degree in biochemistry.

Effective Term: Fall 2014, pending BOR approval of degree program

CURCAT:
Major Department: Chemistry and Physics
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 1
Grading Mode: Normal
Instruction Type: Laboratory
Course Equivalent: None

7. Modify the following course:
CHEM 3801 BIOCHEMISTRY I 3-0-3
Prerequisite: CHEM 2102 (minimum grade of C) & CHEM 2102L (minimum grade of C)

Rationale: The minimum grade requirement aligns with the other 3000 level courses in the Department.

Effective Term: Fall 2014
8. **Modify the following course:**
CHEM 3802 BIOCHEMISTRY II
Prerequisite: CHEM 3801 **(minimum grade of C)**

Rationale: The minimum grade of C aligns with the other 3000 level courses in this program of study. The change from 2-0-2 to 3-0-3 will now align the Biochemistry II course with those at other universities, and provide time to cover the material in more depth.

Effective Term: Fall 2014

9. **Modify the following course:**
CHEM 3803 Biochemistry Laboratory
Pre-requisite: CHEM 2300 **(minimum grade of C)**, CHEM 2102 **(minimum grade of C)** and CHEM 2102L**(minimum grade of C)**
Pre or Co-requisite: CHEM 3802 3801

Rationale: The minimum grade of C aligns with the other 3000 level courses in this program of study. The course pre-reqs are aligned with BCHM 3811 to allow chemistry or biochemistry majors to take the courses with the same pre-requisites.

Effective Term: Fall 2014

10. **Create the following Degree Program**

PROGRAM FOR THE DEGREE BACHELOR OF SCIENCE IN BIOCHEMISTRY

A. General Requirements

Core Areas A, B, C, D and E..42 hours

Biochemistry Majors are required to take a minimum of MATH 1113 in Core Area A and MATH 1161 in Core Area D. Students may choose to take MATH 1161 in Core Area A and MATH 2072 in Core Area D.

Area F..18 hours

CHEM 1211/1211L and CHEM 1212/1212L (unless taken to satisfy Core Area D, in which case, substitute CHEM 2101/2101L and CHEM 2102/2102L)

Choose one sequence from:

- PHYS 1111K- Introductory Physics I and
- PHYS 1112K- Introductory Physics II or
- PHYS 2211K- Principles of Physics I and
- PHYS 2212K- Principles of Physics II or

One hour excess for MATH 1161

One hour lower division approved elective

Physical Education..3 hours

First Year Seminar..1 hour

B. Major Field Courses..36 hours

BCHM 3301 Bioanalytical Chemistry (3)
BCHM 3403 Biophysical Chemistry (3)
BCHM 3811 Introduction to Biochemical Techniques (1)
BCHM 3812 Advanced Biochemistry Laboratory (1) or CHEM 3900 - Biochemistry approved
BCHM 4811 Bioinstrumental Laboratory (1)
CHEM 2101/2101L Organic Chemistry I with Laboratory (4)
CHEM 2102/2102L Organic Chemistry II with Laboratory (4)
CHEM 2300 Principles of Chemical Analysis (4)
CHEM 3801 Biochemistry I (3)
CHEM 3802 Biochemistry II (3)
CHEM 4500 Chemistry Seminar or BCHM 4501 Biochemistry Seminar (2)
7 hours of approved upper division chemistry courses

C. Related Field Courses ...16 hours

BIOL 1107 (and lab) – Principles of Biology I (4)
BIOL 2400 Introduction to Cell and Molecular Biology (3)
BIOL 3000 Cell Biology (3)

Minimum 6 hours from:
 BIOL 3700 Genetics (4)
 BIOL 4000 Cancer Biology (3)
 BIOL 4220 Endocrinology (3)
 BIOL 4400 Virology (3)
 BIOL 4500 Bioinformatics and Biotechnology (3)
 BIOL 4650 Immunology (4)
 Or other department approved upper division biology courses

D. Electives ...8 hours

 5 upper division electives
 3 free electives

Total Semester Hours ... 124 hours

E. Exit Exam

Effective Term: Fall 2014 pending BOR approval

Continued on next page
4 Year Plan

<table>
<thead>
<tr>
<th>Fall</th>
<th>Year 1</th>
<th>Spring</th>
<th>Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH</td>
<td>1113</td>
<td>MATH</td>
<td>1161</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>3</td>
<td>Area B</td>
<td>3</td>
</tr>
<tr>
<td>CHEM</td>
<td>1211</td>
<td>CHEM</td>
<td>1212</td>
</tr>
<tr>
<td>BIOL</td>
<td>1107</td>
<td>elect.</td>
<td>3</td>
</tr>
<tr>
<td>PE</td>
<td>1</td>
<td>PE</td>
<td>1</td>
</tr>
<tr>
<td>FYSX</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Year 2</th>
<th>Spring</th>
<th>Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM</td>
<td>2101</td>
<td>CHEM</td>
<td>2102</td>
</tr>
<tr>
<td>CHEM</td>
<td>2101L</td>
<td>CHEM</td>
<td>2102L</td>
</tr>
<tr>
<td>PHYS</td>
<td>1111K</td>
<td>PHYS</td>
<td>1112K</td>
</tr>
<tr>
<td>ENGL</td>
<td>1102</td>
<td>CHEM</td>
<td>2300</td>
</tr>
<tr>
<td>BIOL</td>
<td>2400</td>
<td>Area</td>
<td>C</td>
</tr>
<tr>
<td>Area</td>
<td>B</td>
<td>PE</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Year 3</th>
<th>Spring</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>E</td>
<td>RF BIOL</td>
<td>3</td>
</tr>
<tr>
<td>CHEM</td>
<td>3801</td>
<td>CHEM</td>
<td>3802</td>
</tr>
<tr>
<td>BCHM</td>
<td>3811</td>
<td>BCHM</td>
<td>3812</td>
</tr>
<tr>
<td>HIST</td>
<td>1100</td>
<td>Area</td>
<td>E</td>
</tr>
<tr>
<td>Area</td>
<td>C</td>
<td>Area</td>
<td>E</td>
</tr>
<tr>
<td>BIOL</td>
<td>3000</td>
<td>Upper Elect</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall</th>
<th>Year 4</th>
<th>Spring</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF BIOL</td>
<td>3</td>
<td>BCHM</td>
<td>4501</td>
</tr>
<tr>
<td>BCHM</td>
<td>3301</td>
<td>BCHM</td>
<td>3403</td>
</tr>
<tr>
<td>Upper CHEM</td>
<td>4</td>
<td>BCHM</td>
<td>4811</td>
</tr>
<tr>
<td>Elective</td>
<td>2</td>
<td>Upper CHEM</td>
<td>3</td>
</tr>
<tr>
<td>Upper Elective</td>
<td>2</td>
<td>elective</td>
<td>3</td>
</tr>
<tr>
<td>Area</td>
<td>E</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Rationale: BS in Biochemistry
Rationale: The biochemistry degree presented is a specific program for students to earn a BS degree in biochemistry. The classes chosen are similar to those at other universities that have an undergraduate biochemistry degree. Currently, Armstrong offers a B.A. degree program in chemistry with a biochemistry track; following approval of this new program this track will be removed. Most of the new classes have been strategically cross listed with existing classes so the implementation of this degree can be achieved without the hiring of a new faculty member. There will be no need for additional classroom space since all of the lecture based classes initially will be cross listed with existing CHEM courses (Table 1).
Table 1: Courses which will be concurrently taught with existing CHEM courses.

<table>
<thead>
<tr>
<th>Biochemistry Course (BCHM)</th>
<th>Title</th>
<th>Chemistry Course (CHEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM 3301</td>
<td>Bioanalytical Chemistry</td>
<td>CHEM 3300</td>
</tr>
<tr>
<td>BCHM 3403</td>
<td>Biophysical Chemistry</td>
<td>CHEM 3401</td>
</tr>
<tr>
<td>BCHM 3811</td>
<td>Intro. to Biochemical Tech.</td>
<td>CHEM 3803</td>
</tr>
</tbody>
</table>

Only BCHM 3812 and BCHM 4811 will be taught as new, non-cross listed courses. BCHEM 4501 is a seminar course and can be cross listed with CHEM 4500, however, the pre-requisites have to be different to assure enough Biochemistry content prior to senior seminar.

BCHM 3811 and BCHM 3812 will be housed in the biochemistry teaching laboratory (Science Center 2301). BCHM 4811, Bioinstrumental Laboratory will be taught out of our instrumental analysis laboratory (Science Center 2202). Thus no new space will be required for instruction. These laboratories are currently equipped with all of the necessary instruments that will be needed to support those classes.

The program will initially be required to add the equivalent of two laboratory sections that are not presently being taught (BCHM 3812 and BCHM 4811). We anticipate this to be reallocation of faculty resources from our present upper division course load. Presently, we have to split upper division laboratories because of enrollment pressures in those courses (CHEM 3200, 3300, 3401, 3402). We anticipate the biochemistry program will assist with alleviating those pressures and allow for reallocation of those faculty assignments to fill the additional 8 hours of instruction (down from 16 presently allocated to the second section of those courses). Thus, we anticipate initially no additional faculty will be needed to support the program of study and also, no impact on our lower level chemistry offerings should be observed (such as Survey of Chemistry I and II, Principles of General Chemistry I and II and Organic Chemistry I and II – all with laboratory).

The program of study has been shared in the past with members of the Biology Department with no concerns raised. There are no hidden pre-requisites and the program is flexible enough to minimize course load impacts on Biology (BIOL 2400 and 3000 will be most impacted as program grows).

The need for a biochemistry degree at Armstrong addresses the three key criteria set by the Board of Regents.

Need for the program - The field of biochemistry is one of the fastest growing areas of science. The city of Savannah is also growing in the field of biomedical sciences as a pharmacy school (opened fall 2003), a cancer research center (opened fall 2006), and a medical school (opened fall 2008) have made their home here. We believe it is important for Armstrong to provide students formal training in biochemistry to address this local need. This is of particular importance since many pharmacy schools are now requiring students to take upper level biochemistry courses prior to enrollment and it is predicted other pharmacy schools will follow this trend. In addition, the Medical College Admissions Test (MCAT) has announced that, starting the fall of 2015, they will be including a Biological and Biochemical Foundations of Living Systems section, which will pertain to specific topics covered in biochemistry. This section significantly increases the biochemistry component on their test. Furthermore, Georgia Regents University’s School of Dental Medicine will require biochemistry to enter their program starting the fall of 2015. As a result, the importance of having a solid academic biochemistry background is becoming a necessity for pre-professional students in Georgia and throughout the United States.

Clearly there has been a shift in these professional schools’ requirements, and developing a biochemistry degree program at Armstrong would allow us to capture students looking for this degree in Southeast Georgia. In addition, the Georgia department of economic development currently has a Georgia Research Alliance along with several bioresearch centers. A biochemistry degree will produce graduates with the...
educational and research background needed to work at these centers. According to the Georgia Department of Labor statistics the 5th highest projected annual growth rate of all jobs in the state is “Medical Scientists, Except Epidemiologists” and biochemistry majors could support this projected need, which is a key component of the USG’s 2013-2018 strategic plan. There has been additional pressure from the state and national legislators to increase the number of STEM (Science, Technology, Engineering, and Math) graduates. Consequently, the formula for state funding is proposed to change starting fall 2015 to include a specific accounting of STEM graduates in funding decisions. Enhancing our STEM degree options with an additional Biochemistry degree could offer a small financial incentive for our university and would support the need to increase STEM professionals.

Demand for the program – Currently, Kennesaw State University (KSU) is the only USG primarily undergraduate institution that has developed a biochemistry degree program. In 2003, the Department of Chemistry at KSU started their biochemistry program and became the Department of Chemistry and Biochemistry. According to the KSU fact book their biochemistry declared majors have increased from 56 in 2003 to 216 in 2012 (increase of 286%), the fastest growth rate of any major (Table 2). The chemistry major had modest growth, at 6%, due to the fact that majors interested in chemistry now had a choice of major. However, as a whole, the Department of Chemistry and Biochemistry grew at a 50% rate, the same as the rate of growth of the college. There may be some concern that installation of the biochemistry degree would move students from their declared biology major into a biochemistry program. However, at KSU the number of biology majors grew at a rate of 83%, which is higher than the College of Science and Mathematics and the Department of Chemistry and Biochemistry overall. Along the same timeframe here at Armstrong, the number of students enrolled in upper level biochemistry courses has more than tripled (Figure 1). Perhaps this popularity is attributed to the fact that science is rapidly moving toward the interdisciplinary boundaries and that there has been an increase demand nationally and particularly in southeast Georgia for this field of chemistry. According to a recent American Chemical Society survey, interdisciplinary employment now dominates the field of chemistry with 43% chemists indicating they worked in “chemistry-related fields”—such as biochemistry and materials science. It is important that we continue to update our curriculum and degree programs so that we can continue to produce competitive students.

In addition, Armstrong has a large percentage of female students (66%). Analysis by the American Chemical Society has shown that the profile of specialty by gender indicates relatively low percentages of women working in physical chemistry (15%); polymer chemistry (18%); organic chemistry (19%); and inorganic chemistry (20%). Women’s highest saturation is in biochemistry and chemical education, each claiming 37%. As a result, this program will better meet the needs and career tendencies of our school population that is predominately female. In addition, if these statistical numbers hold true, this could be a small step in addressing the disciplinary need to recruit more women into the chemistry field.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Fall 2003</th>
<th>Fall 2012</th>
<th>10 year % change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry</td>
<td>56</td>
<td>216</td>
<td>286%</td>
</tr>
<tr>
<td>Chemistry</td>
<td>298</td>
<td>316</td>
<td>6%</td>
</tr>
<tr>
<td>Department of Chemistry & Biochemistry</td>
<td>354</td>
<td>532</td>
<td>50%</td>
</tr>
<tr>
<td>Biology</td>
<td>642</td>
<td>1176</td>
<td>83%</td>
</tr>
<tr>
<td>College of Science and Mathematics</td>
<td>2266</td>
<td>3431</td>
<td>51%</td>
</tr>
</tbody>
</table>

Table 2. Ten year statistics from KSU fact book.
Non-duplication of other USG programs – All of the USG offered degrees in biochemistry are located in north Georgia/Atlanta area (GA Tech, Kennesaw, and Univ. of GA). Currently, universities in the southern and southeastern regions of the state do not have a program for students wanting to pursue a degree in biochemistry. A BS in biochemistry at Armstrong could meet this regional need.

C. Computer Science and Information Technology

Items 1-5 from the Department of Computer Science and Information Technology were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

1. **Modify the following program of study:**

 PROGRAM FOR THE DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

 C. Related Field Courses ... 44 15 hours

 ENGL 3720 - Business and Technical Communication

 STAT 3211 – **Probability and** Statistics Applications I

 One of the following:

 CSCI 3625 – Advanced Discrete Structures

 CSCI 5610U - Numerical Analysis (If used here, may not also be counted as major field course.)

 MATH 2160 – Linear Algebra

 MATH 3411 - Differential Equations

 MATH 3460 - Introduction to Operations Research

 MATH 3480 - Optimization and Graph Theory

 STAT 3222 – **Probability and** Statistics Applications II

 Six additional semester hours of laboratory science courses from Core D Option IIA for science majors or science or engineering courses having a Core D Option II A laboratory science course as a prerequisite (unless already taken to meet core area D requirements)

 C. Free electives ... 7 6 hours

 Rationale: For compliance to standards of the Accreditation Board for Engineering and Technology (ABET). MATH 2160 was a hidden pre-requisite for another course and MATH 3480 has changed in content (Optimization only, not Optimization and Graph Theory) such that it is not the course needed in the program. Also, correction of addition error in hours and correction of some course names.

 Effective Term: Fall 2014

2. **Modify the following course:**

 ITEC 1310 PROGRAMMING IN VISUAL BASIC FOR INFORMATION TECHNOLOGY

 3-0-3

 Prerequisite: MATH 1111

 Introduction to the Visual Basic programming language and the concepts and techniques of microcomputer windows and GUI programming. Syntax of Visual Basic, forms, properties,
controls, variables, decision structures, functions, and subroutines. Development of modular programs for event-driven applications. Introduction to basic concepts and techniques of a contemporary programming language. Topics include language syntax, variables, decision structures, loop structures, functions, and IDE. Development of modular programs for event-driven applications.

Rationale: The rapid development of IT in recent years has significantly diminished the importance of the Visual Basic programming language.

Effective Term: Fall 2014

3. Create the following course:
ITEC 2000 INTRODUCTION TO APP DEVELOPMENT 3-0-3
Prerequisite: CSCI 1301 or ITEC 1310
Introduction to mobile computing and mobile application software development. Topics include mobile computing devices, mobile operating systems, app programming languages and APIs, app development environments, app programming and development cycles.

Rationale: An introductory course on app programming, primarily to serve the computing requirements of Health Informatics and Economics programs.

Effective Term: Fall 2014

CURCAT
Major Department: Computer Science and Information Technology
Cross-listed: No
Repeatable: No
Grading Mode: Normal
Instruction Type: Lecture
Equivalent Courses: None

4. Modify the following course:
CSCI 3301 UNIX AND SECURE WEB DEVELOPMENT 3-0-3
Prerequisite: CSCI 1301 or ITEC 1310

Rationale: For the new Health Informatics and Economics programs to include this course without hidden prerequisite.

Effective Term: Fall 2014

5. The program of study approved at the COHP curriculum committee was also approved in the approved by CST. It represents a joint program between CS/IT and Health Science, a track in the BHS degree focused on Health Informatics at the Undergraduate Level and will be submitted by COHP

D. Engineering Studies (no items)
E. Mathematics (no items)
F. Psychology (no items)
III. College of Health Professions
 A. Diagnostic and Therapeutic Sciences

Items 1-3 from the Department of Diagnostic and Therapeutic Sciences were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

Medical Laboratory Sciences

1. Since the online delivery of the Bachelor of Science in Medical Laboratory Science predated the current approval process, the motion was made to formally approve online delivery of the program. There was a second. The motion carried.

2. **Modify the following paragraph on page 93 of the 2013-14 undergraduate catalog:**

 Medical Laboratory Science Program Traditional Track

 The Traditional Track is for entering freshmen and transfer students, and students with a BS bachelor’s degree in biology, chemistry, or related science fields are eligible for this track as well. During the first two or three years of the four-year program, students complete core curriculum courses in chemistry, biology, mathematics, humanities, and social sciences. The four-semester professional phase starts every fall semester. Courses cover the major laboratory areas (urinalysis, hematology, clinical chemistry, blood banking, microbiology, and serology) and are offered on campus and online. Clinical practicums are provided. Upon completion of the program, graduates are eligible to take the certification examination of the Board of Certification for Medical Laboratory Scientist of the American Society of Clinical Pathology.

 An online fast track option is available for students who have completed a bachelor’s degree in biology, chemistry, or a related science field. This program consists of an online didactic component and a training experience in a clinical laboratory. It provides students with a high-quality academic and professional environment.

 The program graduate will be able to satisfy eligibility requirements for a professional certification exam at the MLS level. Graduates of the Medical Laboratory Science program will qualify for employment in a variety of settings and can progress within the clinical laboratory science field to education, supervision, or management positions. Students in this track must maintain training support at an approved clinical facility while enrolled in the program.

 Rationale: Medical Laboratory Sciences wishes to clarify in the catalog which students are eligible for specific delivery methods of the traditional track of their program.

3. **Delete the following paragraph on page 94 of the 2013-14 undergraduate catalog:**
Medical Laboratory Science Online Fast Track

The Medical Laboratory Science Online Fast Track program is available for students who have completed a Bachelor of Science degree in biology, chemistry, or a related field. The program consists of an online didactic component and a training experience in a clinical laboratory. It provides students with a high quality academic and professional environment. The program graduate will be able to satisfy eligibility requirements for a professional certification exam at the MLS level. Graduates of the Medical Laboratory Science program will qualify for employment in a variety of settings, and can progress within the clinical laboratory science field to education, supervision or management positions. Students in this track must maintain training support at an approved clinical facility while enrolled in the program.

Rationale: Medical Laboratory Sciences wishes to clarify in the catalog which students are eligible for specific delivery methods of the traditional track of their program.

B. Health Sciences

Items 1-2 from the Department of Health Sciences were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

1. **Modify the following course:**
 HSCA 4630 Health Information Systems 3-0-3

 Description: Role and development of information systems in health programs. Emphasis on information based planning models, sources of health related data, and utilization of data for decision making. A survey of commonly utilized health information systems and technologies including electronic health records, computerized provider order entry/electronic prescribing systems, clinical decision support, telehealth and telemedicine, consumer informatics, and administrative support applications. Other topics of coverage include privacy and security of health information, legal/regulatory environment, and issues regarding procurement, implementation and evaluation of health information systems.

 Rationale: The course description is changed to reflect new protocols in health informatics.

 Effective Term: Fall 2014

2. **Create the following program of study track:**

 The following program of study was approved by the College of Health Professions on Aug. 13 and then approved by the College of Science and Technology on Sept. 9. It reflects joint programming by Health Sciences and Information Technology. It is an undergraduate track in the Department of Health Sciences focused on Health Informatics.
Program of Study for Bachelor of Health Science

Track 5: Health Informatics

A. General Requirements (core Areas A, B, C, D.1, and E) 42 hours
 Core Area F .. 18 hours
 CSCI 2070 – Introduction to Computer Ethics and Cyber Security
 HSCC 2500 – Health Issues and Resources
 ITEC 1300 – Fundamentals of Information Technology
 ITEC 1310 – Programming for Information Technology
 MATH 2200 – Elementary Statistics
 RESP 2110 – Medical Terminology
 Physical Education ... 3 hours
 First Year Seminar ... 1 hour

B. Major Field Courses .. 15 hours
 HSCC 3110 – Legal Issues in the Health Care Environment
 HSCC 3140 – Epidemiology
 ITEC 2000 – Introduction to App Development
 ITEC 2530 – Operating Systems
 ITEC 3500 – Database Administration

C. Related Field Courses ... 39 hours
 CSCI 3301 – Unix and Secure Web Development
 HSCA 4620 – Principles of Management in Health Services Organizations
 HSCA 4630 – Health Information Systems
 HSCA 4655 – Principles of Health Insurance and Reimbursement
 HSCA 4660 – Survey of Health Outcomes
 HSCC 3130 – Health Policy Issues
 HSCP 2000 – Ethical Theories/Moral Issues in Health
 ITEC 3600 – Systems Analysis and Design
 ITEC 3710 – E-Commerce
 ITEC 3800 – Data Communications and Networks
 ITEC 4391 – Senior Capstone Project I (ENGL 3720 not required)
 ITEC 4392 – Senior Capstone Project II
 ITEC 5001U – Cyber-Security I

D. Electives .. 6 hours
 Choose 6 hours from the following:
 ECON 2105 – Principles of Macroeconomics*
 ECON 2106 - Principles of Microeconomics*
 ITEC 5002U – Cyber Security II
 MHSA 5500U – Managing Health Professionals
 MHSA 5800U – Comparative Health Care Systems
 *ECON 2105 or ECON 2106 required if not taken in Area E.

Effective Term: Fall 2014
C. Nursing

Items 1-4 from the Department of Nursing were discussed and approved by the committee. They are being submitted to the Faculty Senate for approval.

1. **Modify the following course:**
 NURS 4002 Leadership and Management for Professional Nurses
 \((4-0-4) \) \((3-0-3) \)

 Rationale: Rapidly changing demands in the health care environment necessitate additional content in other courses.

 Effective Term: Fall 2014

2. **Modify the following course:**
 NURS 4004 Health Assessment
 \((2-3-3) \) \((3-3-4) \)

 Rationale: The American Association of Colleges of Nurses has mandated inclusion of gerontology in all nursing courses. Changing the credit distribution will allow for more class time to address issues related to assessment of individuals across the life span.

 Effective Term: Fall 2014

3. **Modify the following course:**
 NURS 4005 Population Focused Community Nursing in a Global Society
 \((4-3-5) \) \((3-3-4) \)

 Rationale: Some content from this course has been integrated in other courses.

 Effective Term: Fall 2014

4. **Modify the following course:**
 NURS 4008 Pathophysiology/Pharmacology
 \((3-0-3) \) \((4-0-4) \)

 Rationale: Rapidly changing issues related to pharmacology necessitate additional content in this area.

 Effective Term: Fall 2014
D. Rehabilitation Sciences

Item 1 from the Department of Rehabilitation Sciences was discussed and approved by the committee. It is being submitted to the Faculty Senate for approval.

1. Modify the following course:
 RHAB 4111 Pathophysiology for the rehabilitation Professions I
 Prerequisite: BIOL 2082 BIOL 2081 or permission of instructor

 Rationale: The faculty have reviewed the syllabi for both BIOL 2081 and BIOL 2082, and the course content in BIOL 2081 is sufficient for RHAB 4111.

 Effective Term: Fall 2014

IV. College of Liberal Arts (no items)

OTHER BUSINESS
A. Charge from the Faculty Senate: The Faculty Senate is considering realigning and reducing the number of senate committees. One such committee is Interdisciplinary Programs. The Faculty Senate requested that the UCC consider how Interdisciplinary Programs may be better represented through UCC. One such suggestion is to have one ex-officio member of UCC chosen from among the directors of Interdisciplinary programs.

 There was discussion of the issue. No motion was forthcoming, as the consensus was that no action need be taken.

ADJOURNMENT. The meeting was adjourned at 4:30 p.m.

Respectfully submitted,

Phyllis L. Fulton
Catalog Editor and Secretary to the Committee