MEMORANDUM

To: University Curriculum Committee
From: Phyllis Fulton
 Catalog Editor and Committee Secretary
Date: November 26, 2014
Re: Agenda – December 3, 2014

The University Curriculum Committee will meet at 3:00 p.m. on Wednesday, December 3 in University Hall 282.

AGENDA

CALL TO ORDER

APPROVAL OF MINUTES – November 5, 2014

ITEMS

I. College of Education (no items)

II. College of Health Professions
 A. Diagnostic and Therapeutic Sciences

1. Modify the following program of study:

 Program for the Degree of Bachelor of Science in Radiologic Sciences

 A. General Requirements (Core Areas A, B, C, D.IIB, and E) 42 hours
 (Nuclear Medicine students must complete a general chemistry course with lab)
 Core Area F ... 18 hours
 BIOL 2081 Human Anatomy and Physiology I
 BIOL 2082 Human Anatomy and Physiology II
 HLPR 2000 Research in Health Professions
 Guided Electives from the following list (4 credit hours)
 RADS 2000 or RESP 2110
 COMM 2280 (except for Sonography track), or a lower-level class (1000-
 or 2000-level) in MATH, CSCI, ITEC, BIOL, CHEM, PHYS, PHSC,
(Nuclear Medicine students who have not completed a Chemistry sequence in Area D must complete one general chemistry course with lab as the science elective)

One of the following:
PHSC 1211/1211L Physical Environment and Lab
PHYS 1111K Introductory Physics I

Rationale: Clarity.

Effective Term: Fall 2015

B. Health Sciences (no items)
C. Nursing (no items)

D. Rehabilitation Sciences

1. Modify the following Program of Study:

Program for the Degree of Bachelor of Science in Communication Sciences and Disorders

A. General Requirements (Core Areas A, B, C, D.IIB, and E) 42 hours

Core Area F ...18 hours
CHEM 1151 Survey of Chemistry I
CHEM 1151L Survey of Chemistry I Laboratory
CSDS 1220 Introduction to Communication Disorders
HSCC 2500 Health Issues & Resources
PHSC 1211 Physical Science
PHSC 1211L Physical Science Lab
HLPR 2000 Introduction to Research in the Health Professions
HSCC 2200 Health Communication
PSYC 2950 Lifespan Developmental Psych

Physical Education ...3 hours
First-Year Seminar ...1 hour

B. Major Field Courses33 hours
CSDS 2230 Anatomy and Physiology of Speech and Hearing Mechanisms
CSDS 2240 Normal Speech and Language Development
CSDS 2250 Phonetics
CSDS 3400 Speech Science
CSDS 3410 Introduction to Audiology
CSDS 3420 Language Disorders
CSDS 3430 Organically Based Communication Disorders
CSDS 3450 Articulation Disorders
CSDS 4050 Intercultural Communication
CSDS 4190 Clinical Methods in Speech-Language Pathology
CSDS 4151 Clinical Writing for the Health Professions

C. Related Field Courses 42–15 hours
PSYC 1101 General Psychology (if not taken in area E)
Note: PSYC 1101 should be completed during the first 36 hours
EDUC 3300 Educating Students w/Disabilities
RHAB 4000 Application of Research to the Rehabilitation Professions
PSYC 3400 Introduction to Learning
PSYC 5060U Basic Behavior Principles and Behavior Change
GERO 5500U Survey of Gerontology

D. Electives .. 12–15 hours
At least six nine hours of electives must be courses numbered 3000 or above. PSYC 1101 General Psychology (if not taken in area E).
If the following sequence is taken in American Sign Language: CSDS 1001, 1002, 2001, all of the additional electives must be at 3000 level or higher.

Total Semester Hours 124 hours

E. Admission to the program, Preservice Portfolio, Current Certification in CPR/First Aid, Criminal Background Check.

Rationale: Program accreditation standards effective September 1, 2014 recommend a course in chemistry or physics to meet the physical science requirement.
PSYC 1101 is not a related field course. In addition, the program of study as well as the 15 to Finish Roadmap for the program specifies PSYC 1101 in the first year of study.
PSYC 3400 has been added as a prerequisite for PSYC 5060U/G which is listed in the current program of study.
Elective hours were adjusted in response to the addition of PYSC 3400 in the related field area.
Students are no longer required to gain admissions to the program or submit the Preservice Portfolio, Current Certification in CPR/First Aid, or Criminal Background Checks.

Effective Term: Fall 2015

2. Modify the following Program of Study:

Program for the Associate of Science -Communication Sciences and Disorders Track

A. General Requirements (Core Areas A, B, C, D.IIB, E)...... 42 hours
Physical Education...3 hours
First-Year Seminar .. 1 hour

B. Additional Requirements 18 hours
CHEM 1151 Survey of Chemistry I
CHEM 1151L Survey of Chemistry I Laboratory
CSDS 1220 Introduction to Communication Disorders
HLPR 2000 Introduction to Research in the Health Professions
HSCC 2200 Health Communication
HSCC 2500 Health Issues and Resources
PHSC 1211/PHSC 1211L Physical Science with lab
PSYC 1101 Introduction to Psychology or PSYC 2950 Lifespan Developmental Psychology

Total Semester Hours 64

C. Exit Exam

Rationale: Program accreditation standards effective September 1, 2014 recommend a course in chemistry or physics to meet the physical science requirement.

Effective Term: Fall 2015

3. Create the following program of study:

Post Baccalaureate Certificate in Communication Sciences and Disorders

The Post-baccalaureate program is designed for individuals who have earned a Bachelor’s degree in disciplines other than Communication Sciences and Disorders and now wish to complete the prerequisite courses (i.e., “leveling courses”) that are often required for admission into a graduate program in either audiology or speech-language pathology.

The certificate is available to students who hold a baccalaureate degree from an accredited institution and have earned a cumulative GPA of 3.0. Interested students should submit an application to the program. Course rotation begins each fall.

Post-Baccalaureate Certificate in Communication Sciences and Disorders.....................24 hours

CSDS 1220 Introduction to Communication Sciences
CSDS 2230 Anatomy and Physiology of Speech and Hearing Mechanisms
CSDS 2240 Normal Speech and Language Development
CSDS 2250 Phonetics
CSDS 3400 Speech Science
CSDS 3410 Introduction to Audiology
CSDS 3420 Language Disorders
CSDS 4151 Writing for the Health Professions

Students completing the certificate in Communication Sciences and Disorders are required to obtain twenty-five clinical observation hours verified with a signature by a certified audiologist or speech-language pathologist as required by the American Speech-Language-Hearing Association. Students are also required to obtain 10 hours of volunteer
activities that are unpaid and serve the University or the Community for the certificate to be awarded.

While completion of the Post-baccalaureate program does not guarantee admission into the Communication Sciences and Disorders Graduate Program at Armstrong, it does qualify students to submit an application for admission into the graduate program at Armstrong and for many other graduate programs in the United States.

For more information about the certificate or for a career in Communication Sciences and Disorders, please contact the program.

Rationale: Communication Sciences and Disorders programs prepares students for careers in the high demand fields of audiology and speech-language pathology. The professions attract working professionals from various backgrounds who are seeking a career change. A graduate degree (Master's in speech-language pathology or Au.D. in audiology) is required in order to become a certified practitioner in the field of communication sciences and disorders. Many graduate programs in speech-language pathology and audiology require applicants to have either an undergraduate degree in the field or a core of prerequisite coursework in the field. Our post-baccalaureate studies program has been developed to help students who wish to pursue a career in speech-language pathology or audiology, but who have an undergraduate degree in an area other than communication sciences and disorders. The Communication Sciences and Disorders program has received significant interest in post-baccalaureate courses which continues to increase.

Effective Term: Fall 2015

III. College of Liberal Arts

A. Art, Music, and Theatre (no items)

B. Criminal Justice, Social, and Political Science

1. Modify the following program of study:

 PROGRAM FOR THE DEGREE OF ASSOCIATE OF APPLIED SCIENCE IN CRIMINAL JUSTICE

 A. General Requirements: Core Areas28 hours
 ENGL 1101 Composition I
 ENGL 1102 Composition II
 MATH 1001 Quantitative Skills and Reasoning or
 MATH 1111 College Algebra
 HIST/POLS 1100 Political History of America and Georgia
 PSYC 1101 Introduction to Psychology
 SOCI 1101 Introductory Sociology
 One course from the following:
HIST 1111, HIST 1112, HIST 2111, HIST 2112, POLS 2100, ANTH 1102, ECON 2105
One course from the following:
ENGL 2100, ARTS 1100, ARTS 2710, ARTS 2720, THEA 1100, MUSC 1100, PHIL2010, PHIL 2030
One course from the following:
BIOL 1107/1107L, CHEM 1211 (and lab), PHYS 1111K, PHSC 1211/1211L

Rationale: Adding Math 1001 allows the Associate degree to be consistent with the Bachelor degree.

Effective Term: Fall 2015

C. Economics

1. Modify the major field courses for the BS in Business Economics

PROGRAM FOR THE DEGREE OF BACHELOR OF SCIENCE IN BUSINESS ECONOMICS

B. Major Field Courses ...30 hours
ECON 3230 Finance
ECON 3700 Econometrics or ECON/MKTG 3800 Quantitative Marketing Research
MGMT 3220 Management
MGMT 4111 Entrepreneurship or ECON 4900 Economic Methods and Senior Thesis
MKTG 3210 Marketing
Six credits selected from:
ECON 3050 Intermediate Macroeconomics and ECON 3060 Intermediate Microeconomics
ECON 3050 Intermediate Macroeconomics and ECON 3500 Managerial Economics
ECON 3060 Intermediate Microeconomics and ECON 3300 Money and Banking
Nine hours
Six credits selected from:
ECON 3100 Multinational Economic Enterprises
ECON 3200 International Trade
ECON 3300 Money and Banking
ECON 3400 Economics of Labor
ECON 3450 Environmental Economics
ECON 3460 Economics of Immigration
ECON 3470 Economics of Health
ECON 3500 Managerial Economics
ECON/MKTG 3800 Quantitative Marketing Research
ECON 4100 Financial Economics: Portfolio Analysis
ECON 4150 Money and Capital Markets
ECON 4310 International Finance
ECON 4410 Regional Economics
ECON 4450 Comparative Economics
ECON 4451 Industrial Organization
ECON 4460 Economic Analysis of the Law
ECON 4500 Public Finance
ECON 4520 Internship

Three credits of upper division economics, 3000 and above, except for ECON 5150U.

Rationale: ECON 3100 and 4460 are sufficiently business oriented to be included in the major field courses. ECON 4450 and 4520 were removed because they are taught as experiential learning courses. The new structure with six credits from a list and three credits from any upper division economics course allows the student to take no more than three credits of the major as experiential learning or as a less business-oriented economics course. Title and crosslist corrections.

Effective Term: Fall 2015

D. Gender Studies (no items)
E. History (no items)
F. Languages, Literature, & Philosophy (no items)
G. Liberal Studies (no items)
H. Honors Program (no items)

IV. College of Science and Technology

A. Biology

1. Create the following course:
 BIOL 4240 BEHAVIORAL ECOLOGY 3-0-3
 Prerequisite: BIOL 3030 (minimum grade of C) or BIOL 3050 (minimum grade of C)
 Examines the survival value of behavior; how behavior is shaped by the environment; and the evolution of behavior.

Rationale: Biology majors will benefit from a comprehensive examination of animal behavior, a subject of biology that is not well addressed by the current curriculum. The subject has been previously offered on two occasions as a section of BIOL 4970, SPECIAL TOPICS.

Effective Term: Fall 2015

CURCAT:
Major Department: Biology
Can Course be repeated for additional credit? No
Maximum Number of Credit Hours: 3
Grading Mode: Normal
Instruction Type: Lecture
Course Equivalent: None

2. Modify the following course:
BIOL 3770 DEVELOPMENTAL AND COMPARATIVE VERTEBRATE ANATOMY OF THE VERTEBRATES 3-6-43-3-4
Prerequisite: BIOL 1108 (minimum grade of C) or BIOL 1108H (minimum grade of C)
Development, anatomy, and evolution of vertebrate organ systems. Form, function, and evolution of major vertebrate systems. Laboratories examine the anatomy of different vertebrate taxa.

Rationale: To better align the focus of the course with that of other institutions and address the needs of pre-veterinary biology students.

Effective Term: Fall 2015

3. Modify the following course:
BIOL 2010 MICROBIOLOGY 3-3-4
Prerequisite: BIOL 1107-1108 (minimum grade of C) and CHEM 1211 (minimum grade of C) and BIOL 1107L (minimum grade of C) or BIOL 1107H (minimum grade of C) and BIOL 1107A (minimum grade of C).

Rationale: Students will benefit from exposure to concepts in evolution addressed in BIOL 1108 and will benefit from practice with microscopic techniques in BIOL 1108L. Students will benefit from having learned basic chemistry principles that they can apply to understanding microbial metabolism.

Effective Term: Fall 2015

4. Modify the following course:
BIOL 3050 GENERAL ECOLOGY 3-4-33-0-3
Prerequisites: BIOL 1108 (minimum grade of C) or BIOL 1108H (minimum grade of C) and BIOL 2010 (minimum grade of C)
Introduction to behavioral, individual, population, community, and ecosystem ecology. Field and laboratory activities cover ecological principles and emphasize sampling procedures and data analysis.

Rationale: Currently, the laboratory section is required for all students who take General Ecology. With recent ecologist hires in Biology, more upper-level ecology courses will be offered and for these, BIOL 3050 will be a pre-requisite. The number of seats in the laboratory section are currently limiting enrollment and this course
suffers from bottlenecks. With the proposed change, BIOL 3050 will still be a required major field course for two tracks, but the lab will count as a biology elective.

Effective Term: Fall 2015

CURCAT:
- **Major Department:** Biology
- **Can course be repeated for additional credit?** No
- **Maximum number of credit hours:** 34
- **Instruction type:** Lecture and Laboratory
- **Course Equivalent:** None

5. **Modify in Banner/add to catalog the following course:**
 BIOL 3050L GENERAL ECOLOGY Laboratory

 Prerequisites: BIOL 1108 (minimum grade of C) or BIOL 1108H (minimum grade of C) and BIOL 2010 (minimum grade of C)

 Prerequisite or Corequisite: BIOL 3050

 Field and laboratory activities cover ecological principles and emphasize sampling procedures and data analysis.

 Rationale: Currently, the laboratory section is required for all students who take General Ecology. With recent ecologist hires in Biology, more upper-level ecology courses will be offered and for these, BIOL 3050 will be a pre-requisite. The number of seats in the laboratory section are currently limiting enrollment and this course suffers from bottlenecks. With the proposed change, BIOL 3050 will still be a required major field course for two tracks, but the lab will count as a biology elective.

 Effective Term: Fall 2015

 CURCAT:
 - **Major Department:** Biology
 - **Can course be repeated for additional credit?** No
 - **Maximum number of credit hours:** 0
 - **Instruction type:** Laboratory
 - **Course Equivalent:** None

6. **Modify the following course:**
 BIOL 2400 Introduction to Cell and Molecular Biology

 Prerequisite: BIOL 1107 (minimum grade of C) and BIOL 1107L (minimum grade of C) or BIOL 1107H (minimum grade of C) and BIOL 1107A (minimum grade of C) and CHEM 1211 (minimum grade of C).

 Rationale: Students will benefit from having learned basic chemistry principles that they can apply to understanding metabolic pathways, energy transformations, and molecular concepts.
Effective Term: Fall 2015

7. Modify the following program of study:

PROGRAM FOR THE DEGREE OF BACHELOR OF SCIENCE IN BIOLOGY

Track I: General Biology

B. Major Field Courses ..32-39 hours

Required Courses (15 hours)
- BIOL 2020 Plant Biology
- BIOL 3000 Cell Biology
- BIOL 3050 General Ecology
- BIOL 3700 Genetics

Elective Courses (18-24 hours)

Choose one of the following:
- BIOL 4150 Plant Physiology
- BIOL 4200 Mammalian Physiology
- BIOL 4210 Comparative Physiology

Choose one of the following:
- BIOL 3250 Limnology
- BIOL 3470 Environmental Restoration
- BIOL 3600 Salt Marsh Ecology
- BIOL 4320 Environmental Microbiology
- BIOL 4460 Phytoplankton Ecology
- BIOL 4750 Tropical Field Biology
- **BIOL 4240 Behavioral Ecology**

Choose two of the following:
- BIOL 3030 Evolution
- BIOL 3520 Medical Microbiology
- BIOL 4000 Cancer Biology
- BIOL 4100 Cell and Molecular Biology Laboratory
- BIOL 4220 Endocrinology
- BIOL 4230 Neurophysiology and Disease
- BIOL 4310 Applied Microbiology
- BIOL 4400 Virology
- BIOL 4500 Bioinformatics and Biotechnology
- BIOL 4510 Molecular Development
- BIOL 4520 Epigenetics
- BIOL 4650 Immunology

Choose two of the following:
- BIOL 3020 Vertebrate Zoology
- BIOL 3150 Horticulture
- BIOL 3200 Plant Taxonomy
- BIOL 3300 Entomology
- BIOL 3310 Invertebrate Zoology
- BIOL 3750 Natural History of Vertebrate Animals
BIOL 3770 Developmental and Comparative Vertebrate Anatomy of the Vertebrates
BIOL 3800 Mycology
BIOL 3920 Parasitology
BIOL 3950 Human Embryology
BIOL 4470 Sea Turtle Biology
BIOL 4550 Biology of Marine Organisms
BIOL 4600 Ichthyology

Track II: Marine Biology
B. Major Field Courses ...32-35 hours
Required Courses (19 hours)
BIOL 2020 Plant Biology
BIOL 3000 Cell Biology
BIOL 3050 General Ecology
BIOL 3700 Genetics
BIOL 4550 Biology of Marine Organisms
Elective Courses (13-16 hours)
Choose one of the following:
BIOL 4150 Plant Physiology
BIOL 4200 Mammalian Physiology
BIOL 4210 Comparative Physiology
Choose one of the following:
BIOL 3020 Vertebrate Zoology
BIOL 3310 Invertebrate Zoology
BIOL 3750 Natural History of Vertebrate Animals
BIOL 3770 Comparative Vertebrate Anatomy
Choose two of the following:
BIOL 3030 Evolution
BIOL 3200 Plant Taxonomy
BIOL 3250 Limnology
BIOL 4320 Environmental Microbiology
BIOL 4460 Phytoplankton Ecology
BIOL 4470 Sea Turtle Biology
BIOL 4600 Ichthyology
BIOL 4240 Behavioral Ecology
BIOL 4750 Tropical Field Biology

Track III: Cell and Molecular Biology
B. Major Field Courses ...25-28 hours
Required Courses (12 hours)
BIOL 3000 Cell Biology
BIOL 3700 Genetics
BIOL 4100 Cell and Molecular Biology Laboratory
BIOL 4500 Bioinformatics and Biotechnology
Elective Courses (13-16 hours)
Choose one of the following:
 BIOL 4150 Plant Physiology
 BIOL 4200 Mammalian Physiology
 BIOL 4210 Comparative Physiology

Choose one of the following:
 BIOL 3020 Vertebrate Zoology
 BIOL 3030 Evolution
 BIOL 3300 Entomology
 BIOL 3310 Invertebrate Zoology
 BIOL 3750 Natural History of Vertebrate Animals
 BIOL 3770 Comparative Vertebrate Anatomy
 BIOL 3800 Mycology
 BIOL 3920 Parasitology

Choose two of the following:
 BIOL 3520 Medical Microbiology
 BIOL 3950 Human Embryology
 BIOL 4000 Cancer Biology
 BIOL 4220 Endocrinology
 BIOL 4230 Neurophysiology and Disease
 BIOL 4310 Applied Microbiology
 BIOL 4320 Environmental Microbiology
 BIOL 4400 Virology
 BIOL 4510 Molecular Development
 BIOL 4520 Epigenetics
 BIOL 4650 Immunology

B. Chemistry and Physics

1. **Modify the following course:**
 PHYS 3120 DIGITAL ELECTRONICS AND MICROCONTROLLERS
 1-5-32-2-3

 Prerequisite: PHYS 2212K (minimum grade of C) or both MATH 1161 and PHYS 1112K (minimum grade of C)

 Introduction to discrete components and integrated circuits. Hands-on lab experience in constructing and investigating an array of digital circuits that are directly applicable in instrumentation. Digital circuits, analysis of logic signals, microcontroller programming and interfacing with applications to physical systems.

 Rationale: Given the rapid evolution of digital technology, the Digital Electronics course must be updated to reflect the current state of the art. The extreme increase in capabilities and decrease in cost that has transformed the personal computer industry has had the same effect on the microcontroller industry. As a result, many problems that would previously have required a handful of integrated circuits can now be addressed with a single microcontroller and several lines of code. The lab and lecture
hours are being adjusted to reduce the number of lab contact hours and increase the number of lecture contact hours.

Effective term: Fall 2015

Courses for the proposed Robotics and Mechatronics Track:

2. Create the following course:
 PHYS 3170 SENSOR DEVELOPMENT AND DATA ANALYSIS 2-2-3
 Prerequisite: PHYS 2212K (minimum grade of C) or both MATH 1161 and PHYS 1112K (minimum grade of C)
 Design and construction of a variety of sensors for physical quantities. Implementation, data collection, and analysis of sensor output.

 Rationale: The ubiquity of computers and embedded systems in modern life illustrates the importance of the interaction between the physical and virtual worlds. This course will discuss the principles behind that interaction and focus on ways to develop sensors for a variety of stimuli, as well as the analysis and interpretation of the data collected.

 Effective Term: Fall 2015

 CURCAT:
 Major Department: Chemistry and Physics
 Can course be repeated for additional credit: No
 Maximum Number of Credit Hours: 3
 Grading Mode: Normal
 Instruction Type: Lecture-Lab
 Equivalent Course: None

3. Create the following course:
 PHYS 4200 ANALYSIS AND SYNTHESIS OF MECHATRONIC SYSTEMS 2-2-3
 Prerequisite: PHYS 3170 (minimum grade of C) and ENGR 1371 or CSCI 1301 (minimum grade of C)
 Students will design and construct complete systems involving sensors, algorithms, and physical action on the environment. Hands-on lab experience through applications in experimental physics. Includes a variety of oral and written assignments. Physics faculty involved in assessments.

 Rationale: The capstone course for students in the Mechatronics track. This will represent the synthesis of previous coursework; sensors, microcontrollers, and actuators will be combined into a unified device built to accomplish a particular task.

 Effective Term: Fall 2015
4. Create the following course:
PHYS 3370 HUMAN COMPUTER INTERACTION 3-0–3
Prerequisite: CSCI 1301 or ITEC 1310 or ENGR 1371
Paradigms in user interface design and related human factors. Topics include: user-system compatibility analysis, techniques for user interface design, methods for interface analysis, multimodal interaction and interaction analysis.

Rationale: A key component in the construction of systems that collect data, analyze it, and act on the results is the way the system interfaces with its human programmer or operator. This course will involve haptic devices and their use to provide another channel for the bidirectional flow of information between human and computer.

Effective Term: Fall 2015

5. Create the following course:
PHYS 2030 INTRODUCTION TO COMPUTER ENGINEERING 3-0–3
Prerequisite: CSCI 1060 or CSCI 1301 or ENGR 1371 or CSCI 1371
Computer systems and digital design principles. Architectural concepts, software, Boolean algebra, number systems, combinational datapath elements, sequential logic, storage elements. Design of DRAM control and I/O bus.

Rationale: The design and development of computer hardware allows the students to move beyond prepackaged general purpose control devices and begin to create their own specialized circuitry.

Effective Term: Fall 2015
6. Create the following course:
PHYS 2031 DIGITAL DESIGN LABORATORY 1-3-2
Prerequisite: ENGR 2030 or PHYS 2030 (minimum grade of C)
Design and implementation of digital systems, including a team design project. CAD
tools, project design methodologies, logic synthesis, and assembly language
programming.

Rationale: The design of special-purpose circuitry using FPGA (Field Programmable
Gate Array) devices is an invaluable aid in finding solutions to problems involving
sensor management and control. This lab will show students how to use the FPGA to
combine the flexibility of software with the high performance of special-purpose
integrated circuits.

Effective Term: Fall 2015

CURCAT:
 Major Department: Chemistry and Physics
 Can course be repeated for additional credit: No
 Maximum Number of Credit Hours: 2
 Grading Mode: Normal
 Instruction Type: Lecture-Lab
 Equivalent Course: ENGR 2031

7. Create the following course:
PHYS 2035 PROGRAMMING FOR HARDWARE/ SOFTWARE SYSTEMS 3-3-4
Prerequisite: ENGR 2030 or PHYS 2030 (minimum grade of C)
Programming techniques for hardware and software systems including creation of
complex execution and storage mechanisms based on instruction set architecture and
software design including programming languages and operating systems. Students
will apply and develop these concepts through programming design projects.

Rationale: Most programming courses focus on programs to be executed by personal
computers; the microcontroller and embedded-device environments are quite different
in terms of chip capabilities, capacities, and support circuitry. This course will move
beyond standard PC programming and investigate these other areas.

Effective Term: Fall 2015

CURCAT:
 Major Department: Chemistry and Physics
Courses for the proposed Health Physics Track:

8. **Create the following course:**

 PHYS 3601 INTRODUCTION TO RADIATION SCIENCES I 3-0-3
 Prerequisite: PHYS 3801K (minimum grade of C)
 Fundamentals about atomic physics and radiation: atomic structure, the nucleus, nuclear radiation, radioactive decays and interactions of heavy charged particles with matter.

 Rationale: This course lays the foundation for the health physics track. Health physicists must have an understanding of radiation and its interactions with matter and how to detect radiation in the environment.

 Effective Term: Fall 2015

 CURCAT:
 - Major Department: Chemistry and Physics
 - Can course be repeated for additional credit: No
 - Maximum Number of Credit Hours: 3
 - Grading Mode: Normal
 - Instruction Type: Lecture
 - Equivalent Course: None

9. **Create the following course:**

 PHYS 3602 INTRODUCTION TO RADIATION SCIENCES II 3-0-3
 Prerequisite: PHYS 3601 (minimum grade of C)
 Fundamentals about atomic physics and radiation: interactions of electrons with matter, interactions of photons with matter, neutrons, fission, and methods of radiation detection.

 Rationale: This course continues to lay the foundation for the health physics track. Health physicists must have an understanding of radiation and its interactions with matter and how to detect radiation in the environment.

 Effective Term: Fall 2015

 CURCAT:
 - Major Department: Chemistry and Physics
 - Can course be repeated for additional credit: No
 - Maximum Number of Credit Hours: 3
10. Create the following course:
PHYS 3403 Biophysics 3-0-3
Prerequisite: PHYS 3801K (minimum grade of C)
A survey of physics applications to biology, including the thermodynamics of life, forces affecting conformation in biological molecules, physics of membranes, and spectroscopy.

Rationale: The study of the intersection of physics and biology will give the health physics track major a deeper understanding of biological systems as they relate to physics. This course will be cross-listed by CHEM program as being equivalent to BCHM 3403.

Effective Term: Fall 2015

CURCAT:
Major Department: Chemistry and Physics
Can course be repeated for additional credit: No
Maximum Number of Credit Hours: 3
Grading Mode: Normal
Instruction Type: Lecture
Equivalent Course: BCHM 3403

11. Create the following course:
PHYS 3650 RADIATION EXPOSURE IN THE WORKPLACE AND IN THE ENVIRONMENT 3-0-3
Prerequisite: PHYS 3801K (minimum grade of C)
A survey of how radiation is used in a variety of contexts how it is detected and measured (i.e. dosimetry and radiation detectors) and the effect on people and the environment.

Rationale: Health physicists must have knowledge of how radiation is used for the benefit of people in various sectors of society.

Effective Term: Fall 2015

CURCAT:
Major Department: Chemistry and Physics
Can course be repeated for additional credit: No
Maximum Number of Credit Hours: 3
Grading Mode: Normal
Instruction Type: Lecture
Equivalent Course: None
12. Create the following course:

PHYS 3660 MEDICAL IMAGING

3-0-3

Prerequisite: PHYS 3801K (minimum grade of C)

A survey of how radiation is used in a variety of medical imaging techniques (such as CAT, MRI, and PET).

Rationale: Health physicists must have knowledge of medical imaging techniques.

Effective Term: Fall 2015

CURCAT:

- Major Department: Chemistry and Physics
- Can course be repeated for additional credit: No
- Maximum Number of Credit Hours: 3
- Grading Mode: Normal
- Instruction Type: Lecture
- Equivalent Course: None

13. Create tracks for the program of study for the B.S. in Applied Physics as follows:

PROGRAM FOR THE DEGREE OF BACHELOR OF SCIENCE IN APPLIED PHYSICS

<table>
<thead>
<tr>
<th>Track 1: Applied Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. General Requirements</td>
</tr>
<tr>
<td>Core Areas A, B, C, D.IIA, and E 42 hours</td>
</tr>
<tr>
<td>Applied physics majors are required to take MATH 1113 in core area A and MATH 1161 in core area D</td>
</tr>
<tr>
<td>Area F ...18 hours</td>
</tr>
<tr>
<td>PHYS 2211K, 2212K Principles of Physics I, II (unless taken to satisfy core area D, in which case replace with 8 hours of lower division electives)</td>
</tr>
<tr>
<td>MATH 2072 Calculus II</td>
</tr>
<tr>
<td>MATH 2083 Calculus III</td>
</tr>
<tr>
<td>One hour excess for MATH 1161 from Core Area D</td>
</tr>
<tr>
<td>1 hour excess from PHYS 1000 or from any science or math course</td>
</tr>
<tr>
<td>Physical Education ...3 hours</td>
</tr>
<tr>
<td>First-Year Seminar .. 1 hour</td>
</tr>
<tr>
<td>B. Major Field Courses30 hours</td>
</tr>
<tr>
<td>Choose one of the following courses:</td>
</tr>
<tr>
<td>PHYS 3100 Electrical Circuit Analysis or ENGR 3100 Circuit Analysis</td>
</tr>
<tr>
<td>PHYS 3120 Digital Electronics</td>
</tr>
<tr>
<td>PHYS 3300 Thermodynamics or PHYS 3400 Chemical Thermodynamics</td>
</tr>
<tr>
<td>PHYS 3801K Modern Physics</td>
</tr>
<tr>
<td>PHYS 3802 Introduction to Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS 4120 Scientific Measurement with Digital Interfacing</td>
</tr>
</tbody>
</table>
PHYS 4170 Advanced Mechanics
Choose twelve semester hours from:
- PHYS 2900 Introduction to Research in Physics
- PHYS 3100 Electrical Circuit Analysis or ENGR 3100 Circuit Analysis (if not previously counted above)
- PHYS 3120 Digital Electronics (if not previously counted above)
- PHYS 3142 Computational Physics
- PHYS 3200 Mathematical Methods for Physicists
- PHYS 3220 Mechanics of Deformable Bodies
- PHYS 3230 Fluid Mechanics
- PHYS 3312 Electromagnetism
- PHYS 3500 Diffraction and Crystallography
- PHYS 3700K Optics
- PHYS 4800 Pedagogy and Supplemental Instruction in Physics (maximum of 3 hours can be used in this section)
- PHYS 4900 Independent Study in Physics
- PHYS 4950 Special Topics in Physics
- PHYS 4960 Physics Internship
- PHYS 4991 Advanced Research in Physics

C. Related Field Courses ...23 hours
- CHEM 1211 Principles of Chemistry I (and lab)
- CHEM 1212 Principles of Chemistry II (and lab)
- CSCI 1301 Introduction to Programming Principles or ENGR 1371 Computing for Engineers
- MATH 2160 Linear Algebra
- MATH 3411 Differential Equations
 A three semester-hour upper-division math course (3000 or 4000 level, excluding MATH 3411, 3900, 3911, 3912, 3932, 4000, 4750, 4900, 4910, 4961, 4962, 4963, 5412U, 5600U, 5700U, 5900U, 5911U)
 Three semester hours of related field electives approved by the physics faculty

D. Electives ...7 hours
- Upper-division courses (6 semester hours)
- Free elective (1 semester hour)

Total Semester Hours ..124 hours

E. Exit Exam

Track II: Robotics and Mechatronics

A. General Requirements
- Core Areas A, B, C, D,IIA, and E42 hours
 Applied physics majors are required to take MATH 1113 in core area A and MATH 1161 in core area D
- Area F ...18 hours
 PHYS 2211K, 2212K Principles of Physics I, II (unless taken to satisfy core area D, in which case replace with 8 hours of lower division electives)
 MATH 2072 Calculus II
MATH 2160
CSCI 1301 or ENGR 1371

Physical Education ...3 hours
First-Year Seminar ..1 hour

B. Major Field Courses ...30 hours

PHYS 2030 Introduction to Computer Engineering
PHYS 2031 Digital Design Laboratory
PHYS 2035 Programming for Hardware/Software Systems
PHYS 3100 Electrical Circuit Analysis
PHYS 3120 Digital Electronics and Microcontrollers
PHYS 3142 Computational Physics
PHYS 3170 Sensor Development and Data Analysis
PHYS 3801K Modern Physics
PHYS 4200 Analysis and Synthesis of Mechatronic Systems
PHYS 3370 Human Computer Interaction

C. Related Field Courses ..23 hours

CHEM 1211 Principles of Chemistry I (and lab)
CHEM 1212 Principles of Chemistry II (and lab)
MATH 3411 Differential Equations
Twelve semester hours (nine hours of which must be upper division level) of related field electives approved by the physics faculty.

D. Electives ..7 hours

Upper-division courses (6 semester hours)
Free elective (1 semester hour)

Total Semester Hours ...124 hours

E. Exit Exam

Track III: Health Physics

A. General Requirements

Core Areas A, B, C, D,IIA, and E42 hours

Applied physics majors are required to take MATH 1113 in core area A and MATH 1161 in core area D

Area F ..18 hours

PHYS 2211K, 2212K Principles of Physics I, II (unless taken to satisfy core area D, in which case replace with 8 hours of lower division electives)
MATH 2160 or STAT 3231
MATH 2072 Calculus II
CSCI 1301 Introduction to Programming Principles or ENGR 1371 Computing for Engineers

Physical Education ...3 hours
First-Year Seminar ...1 hour

B. Major Field Courses ...30 hours

PHYS 3100 Electrical Circuit Analysis or ENGR 3100 Circuit Analysis
PHYS 3801K Modern Physics
PHYS 3802 Introduction to Quantum Mechanics
PHYS 3403 Biophysics
PHYS 3601 Introduction to Radiation Sciences I
PHYS 3602 Introduction to Radiation Sciences II
PHYS 3650 Radiation Exposure in the Workplace and Environment
PHYS 3660 Medical Imaging
Choose three semester hours from:
 PHYS 2900 Introduction to Research in Physics
 PHYS 3220 Mechanics of Deformable Bodies
 PHYS 3230 Fluid Mechanics
 PHYS 3312 Electromagnetism
 PHYS 3400 Chemical Thermodynamics
 PHYS 3500 Diffraction and Crystallography
 PHYS 4991 Advanced Research in Physics
Choose three semester hours from:
 PHYS 4900 Independent Study in Physics
 PHYS 4950 Special Topics in Physics
 PHYS 4960 Physics Internship
C. Related Field Courses .. 23 hours
 CHEM 1211 Principles of Chemistry I (and lab)
 CHEM 1212 Principles of Chemistry II (and lab)
 MATH 3411 Differential Equations
 Twelve semester hours of related field electives approved by the physics faculty.
D. Electives ... 7 hours
 Upper-division courses (6 semester hours)
 Free elective (1 semester hour)

Total Semester Hours .. 124 hours

E. Exit Exam

Rationale: As a result of program review, the physics program has concluded that the program should seek to become more attractive than just being able to offer the traditional applied physics major. We see this as an opportunity to offer specialized tracks in Robotics and Mechatronics and Health Physics.

The Robotics and Mechatronics track would prepare the graduate the skills from not only the world of physics but from engineering and computer science to be capable of understanding the processes of measurement and control that are being utilized in industry and manufacture. This would require the creation of six new physics courses. However, three of these courses are being created to cross-list pre-existing one CSCI and two ENGR courses as equivalent to physics courses in the physics major field. This is being done by consultation and agreement with CSCI and ENGR programs.

The Health Physics Track is being created to be in line with Armstrong’s stated mission as being the regional health education institution in the USG system. This track would teach its graduate skills needed to either enter graduate school in
programs such as a biophysics or to pursue a career in policy design/decisions at laboratories and health facilities. This would require the creation of five new physics courses. However, one of these courses would be a cross-listing with a pre-existing BCHM course as equivalent to the course in the physics major field. This is being done by consultation and agreement with the BCHM program.

Effective Term: Fall 2015

C. Computer Science and Information Technology

1. Create the following track:

PROGRAM FOR THE DEGREE OF ASSOCIATE OF SCIENCE.

Cyber Security Track
A. General Requirements (Core Areas A, B, C, D.I, and E)42 hours
 Physical Education ... 3 hours
 First-Year Seminar .. 1 hour
B. Additional Requirements .. 18 hours
 MATH 1111- College Algebra (if not taken in Core Area A)
 ITEC 1310 – Programming for IT
 CSCI 2070 - Ethical Considerations in Computer Science
 ITEC 3700 – Cyber Security I
 ITEC 4200 – Cyber Security II, Network Security
 ITEC 4300 – Cyber Security III, Ethical Hacking
 If MATH 1111 was taken in Core A, then select one of the following:
 MATH 1113 – Pre-Calculus Mathematics
 CSCI 1150 – Fundamentals of the Internet and the World Wide Web (if not taken in Area D)

Total Semester Hours 64

Rationale: By offering an Associate of Science with a Cyber Security track, the Cyber Security curriculum will become “stackable.” It allows a student who may have only matriculated to Armstrong for the undergraduate certificate, and then wanting to earn a degree, to take the credits earned for the certificate and apply them to an Associate’s degree. Should that student decide to earn a Bachelor’s in Information Technology at Armstrong, or an equivalent Bachelor’s degree at another institution (especially another USG institution), the Associate’s will then allow that student to seamlessly transition into the major program.

Effective Term: Fall 2015
D. Engineering Studies

1. Cross-list the following course as PHYS 2030:
 ENGR 2030 INTRODUCTION TO COMPUTER ENGINEERING 3-0-3

 Rationale. This course is required for electrical and computer engineers in the engineering transfer program, it is also a course that may be taken towards obtaining an Associates of Science with a concentration in engineering. The physics program is currently proposing a mechatronics track within the BS Physics program. ENGR2030 would be a requisite course in this track, cross listed as PHYS 2030.

 Effective Term: Fall 2015

 CURCAT:

 Course Equivalent: PHYS 2030

2. Cross-list the following course as PHYS 2031:
 ENGR 2031 DIGITAL DESIGN LABORATORY 1-3-2

 Rationale. This course is required for electrical and computer engineers in the engineering transfer program, it is also a course that may be taken towards obtaining an Associates of Science with a concentration in engineering. The physics program is currently proposing a mechatronics track within the BS Physics program. ENGR2031 would be a requisite course in this track, cross listed as PHYS 2031.

 Effective Term: Fall 2015

 CURCAT:

 Course Equivalent: PHYS 2031

3. Cross list the following course as PHYS 2035:
 ENGR 2035 – Programming for Hardware/Software Systems 3-3-4

 Rationale. This course is required for electrical and computer engineers in the engineering transfer program, it is also a course that may be taken towards obtaining an Associates of Science with a concentration in engineering. The physics program is currently proposing a mechatronics track within the BS Physics program. ENGR2035 would be a requisite course in this track, cross listed as PHYS 2035.

 Effective Term: Fall 2015

 CURCAT:

 Course Equivalent: PHYS 2035
E. Mathematics

1. Create the following course:
 MATH 0987 Foundations for Quantitative Reasoning (MATH 1001) 3-0-3
 Prerequisite: Placement according to Math Placement Index (MPI) < 1075
 Description: Study of set relationships, Venn diagrams, real number arithmetic, algebraic expressions, equations, functions, slopes, rates of change, coordinate graphing, and introductory statistics topics. This course is designed to review common arithmetic topics as well as introduce students to foundational algebra and statistics topics covered in MATH 1001.

 Rationale: This course is being created for all University System of Georgia institutions offering remediation for MATH 1001. It is intended as a full semester remedial course to be followed by a corequisite remedial course, MATH 0997

 Effective Term: Fall 2015

 CURCAT:
 Major Department: Mathematics
 Can course be repeated for additional credit? No
 Maximum Number of Credit Hours: 3
 Grading Mode: S/U
 Instruction Type: Lecture
 Course Equivalent: None

2. Create the following course:
 MATH 0997 Support for Quantitative Reasoning (MATH 1001) 2-0-2
 Prerequisite: Placement according to Math Placement Index (1075 ≤ MPI < 1165) or successful completion of MATH 0987.
 Description: Provides just-in-time support for students concurrently enrolled in MATH 1001. Additional review and practice will be provided for relevant MATH 1001 course topics: logic and reasoning, sets and Venn diagrams, units of measure, percentages, formulas, fundamentals of statistics and statistical graphics, probability, functions, and modeling.

 Rationale: This course is being created for all University System of Georgia institutions offering remediation for MATH 1001. It will be taught concurrently with MATH 1001.

 Effective Term: Fall 2015

 CURCAT:
 Major Department: Mathematics
 Can course be repeated for additional credit? No
 Maximum Number of Credit Hours: 2
 Grading Mode: S/U
3. Create the following course:
MATH 0989 Foundations for College Algebra (MATH 1111) 3-0-3
Prerequisite: Placement according to Math Placement Index (MPI) < 1100
Description: A study of the essential mathematical concepts required for success in
College Algebra (MATH 1111). Topics include properties of real numbers, linear
equations and inequalities, quadratic equations, graphs, polynomials, and roots.

Rationale: This course is being created for all University System of Georgia
institutions offering remediation for MATH 1111. It is intended as a full semester
remedial course to be followed by a corequisite remedial course, MATH 0999.

Effective Term: Fall 2015

CURCAT:
 Major Department: Mathematics
 Can course be repeated for additional credit? No
 Maximum Number of Credit Hours: 3
 Grading Mode: S/U
 Instruction Type: Lecture
 Course Equivalent: None

4. Create the following course:
MATH 0999 Support for College Algebra (MATH 1111) 2-0-2
Prerequisite: Placement according to Math Placement Index (1100 ≤ MPI < 1265) or
successful completion of MATH 0989.
Description: Provides just-in-time support for students concurrently enrolled in
MATH 1111. Topics will parallel topics studied in MATH 1111, as well as essential
quantitative skills needed to be successful in MATH 1111, including factoring,
polynomial expressions, and roots.

Rationale: This course is being created for all University System of Georgia
institutions offering remediation for MATH 1111. It will be taught concurrently with
MATH 1111.

Effective Term: Fall 2015

CURCAT:
 Major Department: Mathematics
 Can course be repeated for additional credit? No
 Maximum Number of Credit Hours: 2
 Grading Mode: S/U
 Instruction Type: Lecture
 Course Equivalent: None
F. Psychology

1. **Modify the following course:**
 PSYC 2190 – Careers and Professional Skills in Psychology 3-0-3
 Prerequisites: PSYC 1101 and MATH 2200 (minimum grade of C)
 Corequisites: PSYC 2200 and 2201

 Rationale: The course content in PSYC 2190, 2200, and 2201 are complementary and taking these courses as a learning community will help students synthesize the course content across all three courses.

 Effective Term: Fall 2015

2. **Modify the following course:**
 PSYC 2200 INTRODUCTION TO PSYCHOLOGICAL RESEARCH 3-0-3
 Prerequisites: PSYC 1101 and MATH 2200 (minimum grade of C)
 Corequisites: PSYC 2190 and PSYC 2201

 An introduction to scientific methodology and its application to psychology, with emphasis on data collection methods and statistical techniques including, but not limited to, correlation, factorial ANOVA, and nonparametric procedures. Students are required to perform statistical analyses using SPSS statistical programs, conduct an original psychological investigation, and write an APA style report of the research.

 Rationale: The course content in PSYC 2190, 2200, and 2201 are complementary and taking these courses as a learning community will help students synthesize the course content across all three courses.

 Effective Term: Fall 2015

3. **Modify the following course:**
 PSYC 2201 INTRODUCTION TO PSYCHOLOGICAL RESEARCH LAB 0-1-1
 Prerequisites: PSYC 1101 and MATH 2200 (minimum grade of C)
 Co-requisites: PSYC 2190 and PSYC 2200

 Rationale: The course content in PSYC 2190, 2200, and 2201 are complementary and taking these courses as a learning community will help students synthesize the course content across all three courses.

 Effective Term: Fall 2015

OTHER BUSINESS

ADJOURNMENT